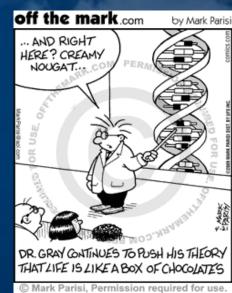
Jonathan Sebat, M.S., PhD

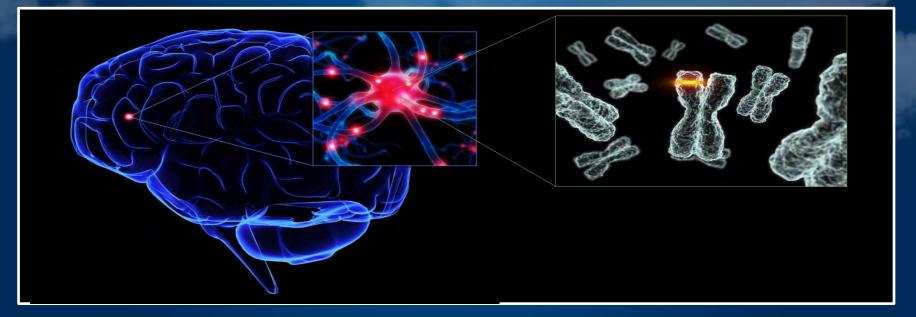
Autism Specialist Psychiatry and Cellular and Molecular Medicine Chief, Beyster Center for Molecular Genomics of Neuropsychiatric Diseases Associate Professor UC San Diego, School of Medicine

SPECIALTY: Psychiatry and Autism Specialist


UNDERGRADUATE SCHOOL: University of California, Santa Barbara

DOCTORATE: University of Idaho

RESIDENCY: Cold Spring Harbor Laboratory (New York)


FELLOWSHIP: Cold Spring Harbor Laboratory (New York)

Jonathan Sebat, Ph.D.

Autism doesn't run in my family. Rady How can my child's autism be genetic?

Department of Psychiatry, Cellular & Molecular Medicine , Institute for Genomic Medicine

Disclosures

None

Outline

Myths about the causes of autism
CNVs & the paradigm shift in autism genetics
New Discoveries from Exome and Whole Genome Sequencing

A vaccine health scare is born (Wakefield et al., The Lancet, 1998)

EARLY REPORT

Early report

Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children

A J Wakefield, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson, P Harvey, A Valentine, S E Davies, J A Walker-Smith

Summary

Background We investigated a consecutive series of children with chronic enterocolitis and regressive developmental disorder.

Methods 12 children (mean age 6 years [range 3-10], 11 boys) were referred to a paediatric gastroenterology unit with a history of normal development followed by loss of acquired skills, including language, together with diarrhoea abdominal pain. Children underwent and gastroenterological, neurological, and developmental assessment and review of developmental records. Ileocolonoscopy and biopsy sampling, magnetic-resonance imaging (MRI), electroencephalography (EEG), and lumbar puncture were done under sedation. Barium follow-through radiography was done where possible. Biochemical, haematological, and immunological profiles were examined

Findings Onset of behavioural symptoms was associated by the parents, with measles, mumps, and rub vaccination in eight of the 12 children, with meas infection in one child, and otitis media in a AII 1 angir children had intestinal abnormalities fron ration. lymphoid nodular hyperplasia to a noid ul Histology showed patchy chronic inflan in 11 children and reactive ilea mpho perplasia in seven, but no granulomas. Be ioural disol included autism (nine), disintegrativ sis (one). postviral or vaccinal encephalitis o). There were no focal neurological ab malities and and EEG tests were normal. Abno al laboratory results there significantly acid compared with ageraised urinary thylmal .03). low haemoglobin in four matched control children m lgA ir r children

Internation e identical associated gastrointestinal diar se and exclopmental regression in a group of previously amatematical which was generally associated in time, as possible environmental triggers.

Lancet 1998, **351**: 637–41 See Commentary page

Inflammatory Bowel Disease Study Group, University Departments of Medicine and Histopathology (A J Wakefield Incs, A Anthony Me, J Linnell me, A P Dhillon Mncarth, S E Davies MncPan) and the University Departments of Paediatric Gastroenterology (S H Murch Ms, D M Casson MncP, M Malik MncP, M A Thomson FROP, J A Walker-Smith Renc), Child and Adolescent Paychiatry (M Berelowitz FROFeych), Neurology (P Harvey FROP), and Radiology (A Valentine FROP, Royal Free Hospital and School of Medicine, London NW3 2QG, UK

Correspondence to: Dr A J Wakefield

Introduction

We saw several children who, after a p of apparent normality, lost acquired skills, include g COI ication They all had gastrointestinal mptoms. uding abdominal pain, diarrhoea, and ating and, i some cases, food intolerance. We lings, cribe clinical fi and gastrointestinal feature of these ch en.

Patients and meth

12 children, const department of paediatric gastr terology of a pervasive der with los ed skills and intestinal developmenta an, bloating and food symptoms abdomin rated. All children were admitted to the intolerance), were in ward for week, accom ed by their parents.

hical investigations

Took historic including details of immunisations and consure to infect us diseases, and assessed the children. In 11 case the historic as obtained by the senior clinician (IW-S). Neutrophysical and psychiatric assessments were done by consultant statil (PH, MB) with HMS-4 criteria. Developmental records in the senior of the senior clinican constraints from priorits, health visitors, and general practitioners. Four children did not undergo psychiatric assessment in hospital; all had been assessed professionally elsewhere, so these assessments were used as the basis for their behavioural diagnosis.

After bowel preparation, ileocolonoscopy was performed by SHM or MAT under sedation with midazolam and pethidine. Paired frozen and formalin-fixed mucosal biopsy samples were taken from the terminal ileum; ascending, transverse, descending, and sigmoid colons, and from the rectum. The procedure was recorded by video or still images, and were compared with images of the previous seven consecutive pediatric colonoscopies (four normal colonoscopies and three on children with ulcerative colitis), in which the physician reported normal appearances in the terminal ileum. Barium follow-through radiography was possible in some cases.

Also under sedation, cerebral magnetic-resonance imaging (MRI), electroencephalography (EEG) including visual, brain stem auditory, and sensory evoked potentials (where compliance made these possible), and lumbar puncture were done.

Laboratory investigations

Thyroid function, serum long-chain fatty acids, and cerebrospinal-fluid lactate were measured to exclude known causes of childhood neurodegenerative disease. Urinary methylmalonic acid was measured in random urine samples from eight of the 12 children and 14 age-matched normal controls, by a modification of a technique described previously.² Chromatograms were scanned digitally on computer, to analyse the methylmalonic-acid zones from cases and controls. Urinary methylmalonic-acid zones from cases and controls ree compared by a two-sample *t* test. Urinary creatinine was estimated by routine spectrophotometric areas

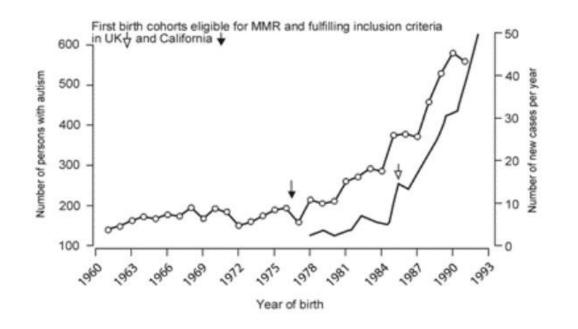
Children were screened for antiendomyseal antibodies and boys were screened for fragile-X if this had not been done

12 children (mean age of 6) referred to gastroenterology

- Regressive developmental delay
- Diarrhea
- Abdominal pain
- Performed GI and neurological exams under sedation
 - Colonoscopy and biopsy
 - MRI, EEG
 - Spinal tap
- Parents reported that onset of symptoms were coincident with receiving MMR vaccinations

Yes, that's all.

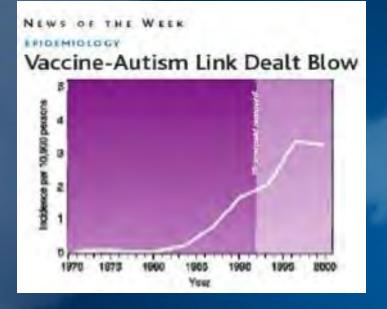
THE LANCET · Vol 351 · February 28, 1998


"Intestinal and behavioural pathologies may have occurred together by chance, reflecting a selection bias in a selfreferred group"

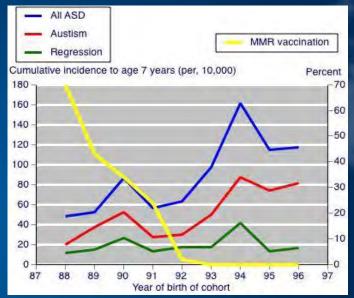
"however, the uniformity of the intestinal pathological changes and the fact that previous studies have found intestinal dysfunction in children with autistic-spectrum disorders, <u>suggests that the connection is real</u> and reflects a unique disease process."

*Later, Wakefield and other hypothesize that the "toxic agent" in vaccines is the vaccine preservative <u>Thimerosal</u> (which contains trace amounts of mercury)

Wakefield argues for an MMR vaccine cause based on temporal correlation of vaccine introduction and rise in prevalence


Wakefield AJ. MMR vaccination and autism. Lancet 1999;354:949-50.

By this logic, we could infer a causal role for handheld calculators, Astroturf and the Environmental Protection Agency


Autism-vaccine link begins to unravel

Stokstad et al Science 2003

Danish Study Shows that Autism rates continued to rise after Thimerosal is removed from Vaccines

Honda et al, 2005

Autism rates continued to rise in Yokohama Japan after withdrawal of the MMR vaccine

And many other studies find no link... Rady Children

A timeline of the Wakefield retraction

28 February Gastroenterologist Andrew Wakefield reports in *The Lancet* that his team has found a "genuinely new syndrome"—a link between the measles, mumps and rubella (MMR) vaccine and an increased risk of autism (*Lancet* **351**, 637–641, 1998).

2002–2004 Numerous studies published in *BMJ*, *The New England Journal of Medicine*, *The Lancet* and other journals find no link between MMR and autism.

28 January The UK General Medical Council rules that Wakefield acted "dishonestly and irresponsibly," and showed "callous disregard" for the suffering of children involved in his controversial research.

2010

6 April Wakefield and Dublin pathologist John O'Leary present research to a US congressional committee showing that 24 of 25 autistic children tested had traces of the measles virus in their gut.

2000

6 March Ten authors on the 1998 paper issue a retraction (*Lancet* **363**, 750, 2004), and *The Lancet*'s editor says the journal, in hindsight, should not have published the study (*Lancet* **363**, 747–749, 2004).

2004

2 February *The Lancet* retracts Wakefield's 1998 paper, noting elements of the manuscript proved to be false (*Lancet* doi:10.1016/S0140-6736(10)60175-7, 2010).

VOLUME 16 | NUMBER 3 | MARCH 2010 NATURE MEDICINE

But it can take decades to get to the truth

-The original paper was shown to be fraudulent.

-But where was the credibility of a possible autism-vaccine in the first place?

248

998

In typically developing children, higher cognitive abilities come online between 1 and 3 years of age

By coincidence, failure to meet these milestones appears to coincide with the recommended vaccine schedule

Then what causes autism?

Autism is a heritable disorder <u>Heritability</u> is the proportion of autism that can be explained by genes. A classical way to measure heritability is through <u>twin studies</u>

MZ twins (genetically identical)

DZ twins

(50% genetically identical)

Siblings (50% genetically identical) Rady

Degree of shared environment is very similar in MZ & DZ twins

	MZ twins	DZ twins	Siblings
Amniotic	only in 5%	No	No
Uterine	Yes	Yes	No
Home	Yes	Yes	Yes

Recurrence risk for Autism Spectrum Disorders

70-90%

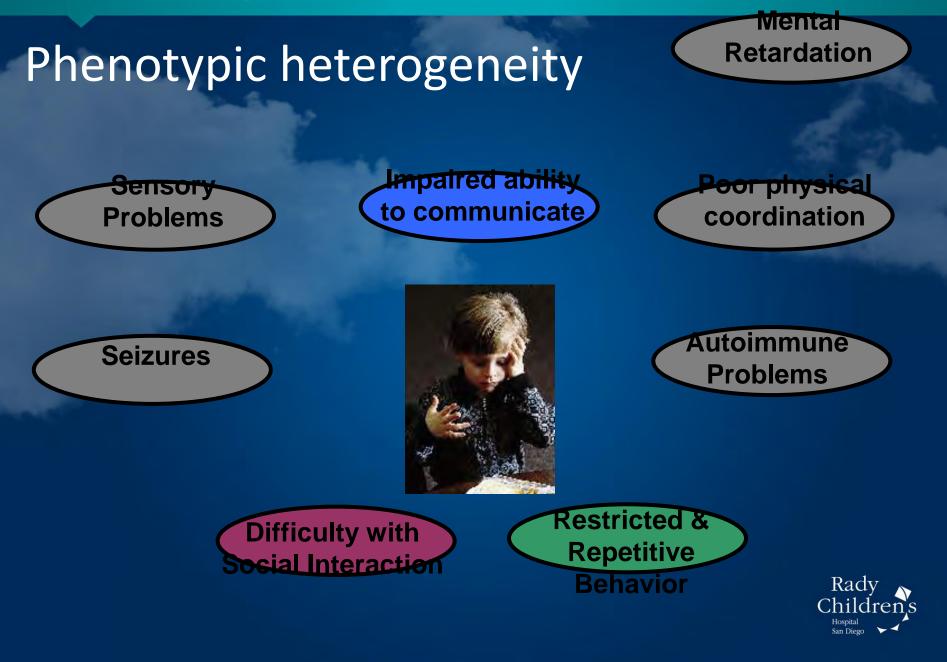
Recurrence risk

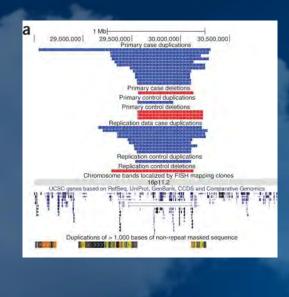
The proportion of autism that can be explained by genes is estimated at 90%

General population

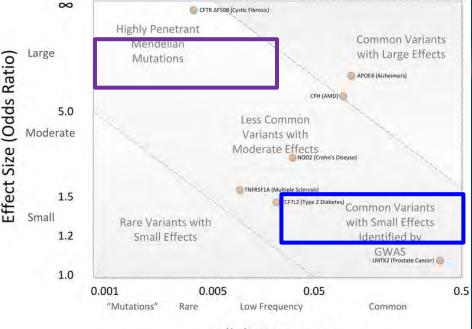
Bolton et al 1994

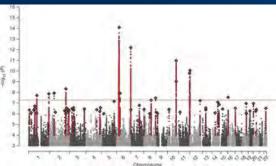
The search for genes 1990-2007


Linkage studies reported findings chromosomes 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22 and X


Signals were weak and did not replicate well across studies
 Candidate gene studies were not reproducible
 Cytogenetic Abnormalities have been reported in >5% of cases
 Some rare single gene disorders meet criteria for ASDs

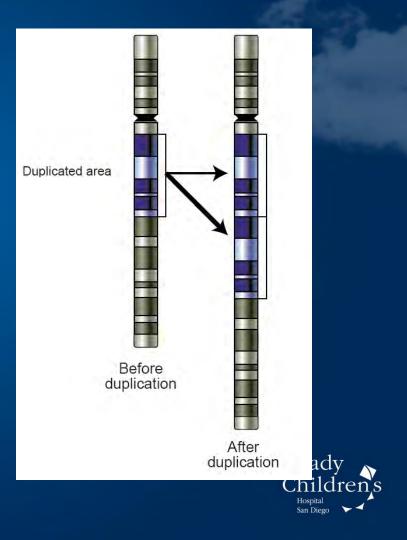
- Fragile X syndrome (FMR1)
- Rett Syndrome (MECP2)
- Tuberous Sclerosis (TSC2)
- Cowden Syndrome (PTEN)
- Sotos Syndrome (NSD1)


Genetics of autism is <u>heterogenous</u>. No one gene accounts for a large proportion of the disorder



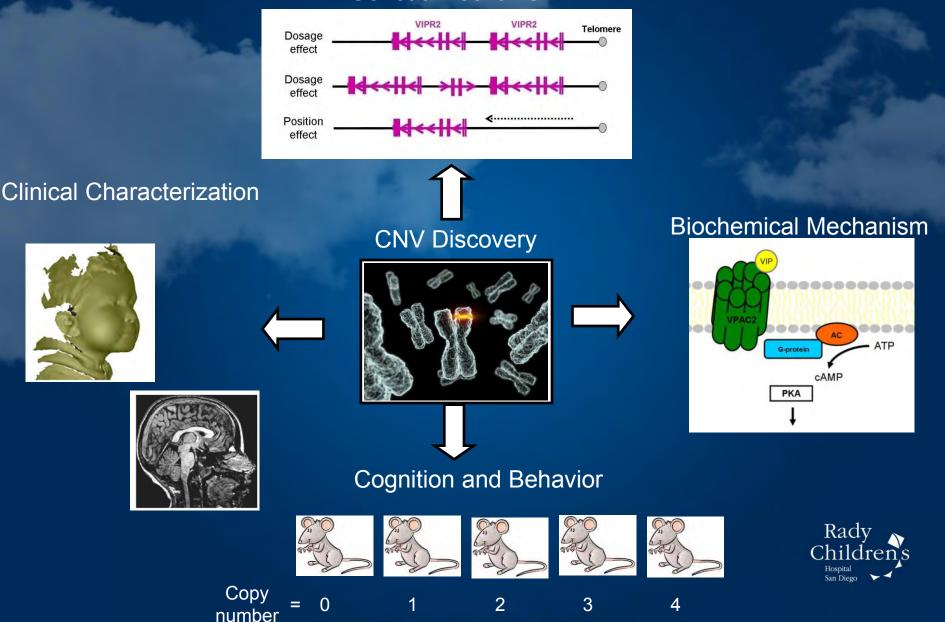
Rare variants of large effect (CNVs)

Allele Frequency

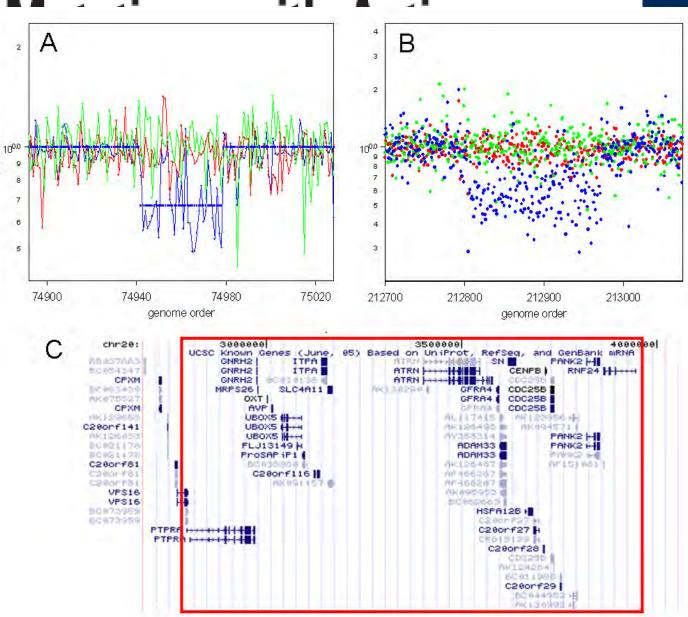

Common variants (SNEE) of modest effect

Copy number variation

Large-Scale Copy Number Polymorphism in the Human Genome


Jonathan Sebat,¹ B. Lakshmi,¹ Jennifer Troge,¹ Joan Alexander,¹ Janet Young,² Pär Lundin,³ Susanne Månér,³ Hillary Massa,² Megan Walker,² Maoyen Chi,¹ Nicholas Navin,¹ Robert Lucito,¹ John Healy,¹ James Hicks,¹ Kenny Ye,⁴ Andrew Reiner,¹ T. Conrad Gilliam,⁵ Barbara Trask,² Nick Patterson,⁶ Anders Zetterberg,³ Michael Wigler¹*

Sebat et al. Science. 2004. 23;305(5683):525-8


CNV-based approach to disease

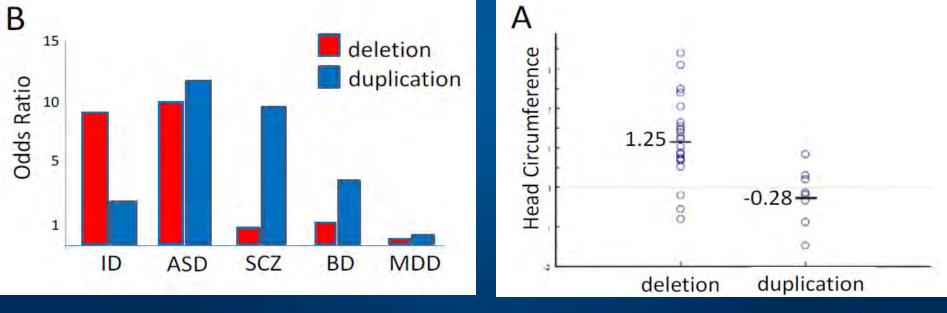
Genetic Mechanism

Strong Association of De Novo Copy

Jonathan Sebat,¹* Tom Walsh,³ Boris Deepa Pai,¹ Ray Zl & Kaija Puura,⁶ Terh James S. Sutcliffe,⁵ Mary-Claire King,³ Kenny Ye,¹⁴ Micha

De novo CNVs detected in subjects

Table 1. Spontaneous CNVs detected by ROMA. A description of 17 de novo CNVs in 16 subjects is provided, along with the methods used for its validation. The number of unique RefSeq genes within each CNV region is indicated, and when the locus apparently encompasses only a single gene, the gene symbol is

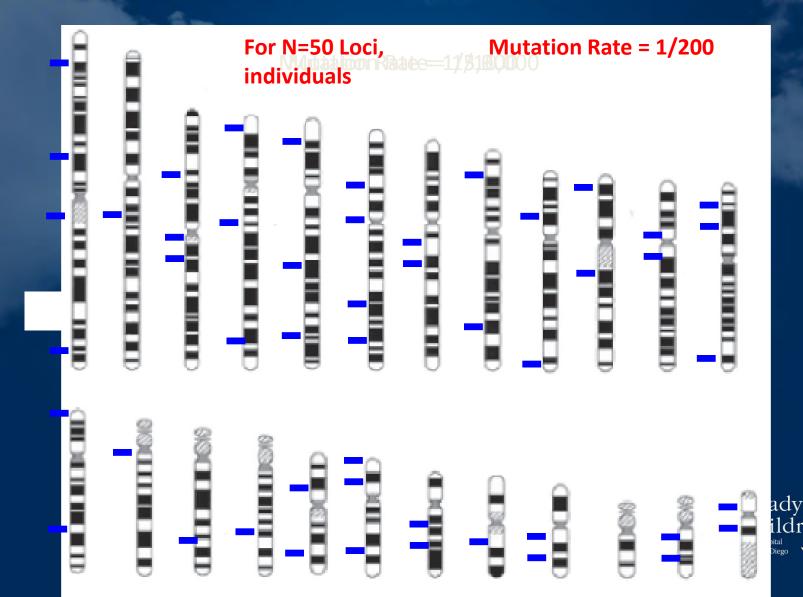

listed. Types of validation included (A) higher-resolution microarray scans by 390K ROMA or Agilent 244K CGH, (B) G-banded karyotype, (C) FISH, and (D) microsatellite genotyping. References are listed for four cases where similar de novo CNVs were previously reported in the literature.

Individual	Locus	Start position	Length	CN change	Family type	Diagnosis	Gender	Validation	# Genes	Single-gene targets	Ref.
63-144-2575 and 2667	2q24.2	162,212,720	99,252	Loss	Simplex	Autism	Female	A	1	SLC4A10	
61-2710-3	2q37.2-q37.3	236,414,455	6,286,648	Loss	Simplex	Autism	Male	A, B, D	50		(19)
Van69-258900	2q37.3	238,217,066	4,484,037	Loss	Simplex	Autism	Male	A, D	43		(19)
89-3507-1	3p14.2	60,746,033	101,507	Loss	Simplex	Autism	Male	А	1	FHIT	
63-562-6612	3p14.2	61,072,100	293,096	Gain	Simplex	Autism	Male	А	1	FHIT	
AU010604	6p23	13,997,280	1,264,651	Loss	Multiplex	Autism	Male	A, D	2		
	13q14.12-q14.13	44,199,441	1,943,737	Loss	-			A, D	13		
AU072203	7p21.1	15,160,118	151,880	Loss	Simplex	Autism	Male	А	1	FL]16237	
AU032903	10q11.23-q21.2	50,562,149	10,916,362	Gain	Multiplex	Autism	Male	А, В	23		
60-3061-4	15q11-q13.33	18,526,971	12,229,800	Gain	Simplex	Autism	Male	А, В	30		(21)
AU077504	16p13.3	5,992,836	207,980	Loss	Simplex	Autism	Female	A, B, C, D	1	A2BP1	
CG2061	16p11.2	29,578,715	502,574	Loss	Simplex	Asperger's	Female	A, C, D	27		
71-259100	20p13	75.912	291.959	Loss	Simplex	Autism	Female	A. C. D	7		
SK-135-C	20p13	2,785,194	1,169,205	Loss	Simplex	Asperger's	Male	A, D	23		
89-3524-100	22q13.31-q13.33	45,144,027	4,321,856	Loss	Simplex	Autism	Female	A, B, C, D	30		(20)
NA10857	2p16.1	58,394,177	2,786,284	Gain	Control	Unaffected	Male	А	7		
AU070807	20p13-p12.3	111,824	5,316,286	Gain	Simplex	Unaffected	Female	Α	69		

Correlating CNV genotype with clinical phenotype (reciprocal deletions and duplications of 16p11.2)

Psychiatric diagnosis

Head Size


McCarthy et al, Nat Gen 2009

Lessons learned

There is a strong association of de novo CNVs and sporadic autism -10% in sporadic cases, 3% in multiplex, 1% in controls 9/14 (>60%) of *de novo* CNVs were "private mutations"

Autism: a common disorder caused by rare mutations

Beyond CNVs

To rare variants in the DNA sequence

De novo point mutations in exons contribute to autism

LETTER

De novo mutations revealed by whole-exome sequencing are strongly associated with autism

Stephan J. Sanders¹, Michael T. Murtha¹, Abha R. Gupta²*, John D. Murdoch¹*, Melanie J. Raubeson¹*, A. Jeremy Willsey¹*, A. Gulhan Ercan-Sencicek¹*, Nicholas M. DiLullo¹*, Neelroop N. Parikshak², Jason L. Stein³, Michael F. Walker¹, Gordon T. Ober¹, Nicole A. Teran¹, Youeun Song¹, Paul El-Fishawy¹, Ryan C. Murtha¹, Murim Choi⁴, John D. Overton⁴, Robert D. Bjornson⁵, Nicholas J. Carriero⁵, Kyle A. Meyer⁶, Kaya Bilguvar⁷, Shrikant M. Mane⁸, Nenad Sestan⁶, Richard P. Lifton⁴, Murat Günel⁷, Kathryn Roeder⁹, Daniel H. Geschwind⁴, Bernie Devlin¹⁰ & Matthew W. State¹

Evan Eichler

LETTER

Sporadic autism exomes reveal a highly interconnected protein network of *de novo* mutations

Brian J. O'Roak¹, Laura Vives¹, Santhosh Girirajan¹, Emre Karakoc¹, Niklas Krumm¹, Bradley P. Coe¹, Roie Levy¹, Arthur Ko¹, Choli Lee¹, Joshua D. Smith¹, Emily H. Turner¹, Ian B. Stanaway¹, Benjamin Vernot¹, Maika Malig¹, Carl Baker¹, Beau Reilly², Joshua M. Akey¹, Elhanan Borenstein^{1,3,4}, Mark J. Rieder¹, Deborah A. Nickerson¹, Raphael Bernier², Jay Shendure¹ & Evan E. Eichler^{1,3}

Michael Wigler

Article

De Novo Gene Disruptions in Children on the Autistic Spectrum

Ivan lossifov,^{1,6} Michael Ronemus,^{1,6} Dan Levy,¹ Zihua Wang,¹ Inessa Hakker,¹ Julie Rosenbaum,¹ Boris Yamrom,¹ Yoon-ha Lee,¹ Giuseppe Narzisi,¹ Anthony Leotta,¹ Jude Kendall,¹ Ewa Grabowska,¹ Beicong Ma,¹ Steven Marks,¹ Linda Rodgers,¹ Asya Stepansky,¹ Jennifer Troge,¹ Peter Andrews,¹ Mitchell Bekritsky,¹ Kith Pradhan,¹ Elena Ghiban,¹ Melissa Kramer,¹ Jennifer Parla,¹ Ryan Demeter,² Lucinda L. Fulton,² Robert S. Fulton,² Vincent J. Magrini,² Kenny Ye,³ Jennifer C. Darnell,⁴ Robert B. Darnell,^{4,5} Elaine R. Mardis,² Richard K. Wilson,² Michael C. Schatz,¹ W. Richard McCombie, ¹ and Michael Wigler^{1.*}

LETTER

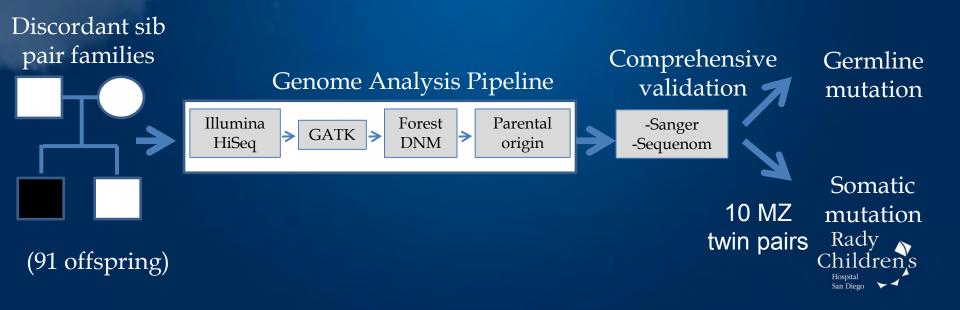
Patterns and rates of exonic *de novo* mutations in autism spectrum disorders

Benjamin M. Neale^{1,2}, Yan Kou^{3,4}, Li Liu⁵, Avi Ma'ayan³, Kaitlin E. Samocha^{1,2}, Aniko Sabo⁶, Chiao-Feng Lin⁷, Christine Stevens², Li-San Wang², Vladimir Makarov^{4,8}, Paz Polak⁹, Seungtai Yoon^{4,8}, Jared Maguire³, Emily L. Crawford⁶, Nicholas G. Campbell⁰, Evan T. Geller⁷, Otto Valladares², Chada Schafer⁴, Han Liu¹¹, Tuo Zhao¹, Guijng Caf^{4,8}, Jayon Lihm^{4,8}, Ruth Dannenfelser³, Omar Jabado¹², Zuleyma Peralta¹², Uma Nagaswamy⁶, Donna Muzny⁶, Jeffrey G. Reid⁶, Irene Newsham⁶, Yuanqing Wu⁶, Lora Lewis⁶, Yi Han⁴, Benjamin F. Voight^{2–18}, Elaine Lim^{1,2}, Elizabeth Rossin^{1,2}, Andrew Kitby^{1,2}, Jason Flannick⁴, Menachem Fromer^{1,2}, Khalid Shaki^{2,7}, Tim Fennell², Kiran Garimella², Eric Bawk Kitby^{1,2}, Jason Flannick⁴, Jack R. Wimbish¹⁴, Braden E. Boone¹⁴, Shawn E. Levy¹⁴, Catalina Betancur¹⁵, Shamil Sunyaev^{2,9}, Eric Boerwinkle^{6,16}, Joseph D, Buxbaum^{4,8,12,17}, Edwin H. Cook Ji¹⁸, Bernie Devlin¹⁹, Richard A. Gibbs⁶, Kathryn Roeder³, Gerard D. Schellenberg⁷,

Autism is a disorder of the synapse...

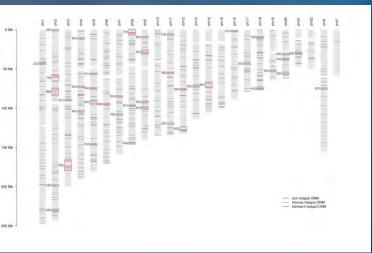
... and the rest of the cell

Class	Gene	Function	
	CHRNA7	cholinergic receptor	
	KATNAL2	microtubule assembly	
	TUBA1A	microtubule assembly; neuronal migration	
	NLGN3	neuronal cell adhesion via interaction with neurexins	1
Synapse	STXBP1	neurotransmitter release at synapses	100
зупарье	GRIN2B	NMDA receptor	
	SHANK2	postsynaptic scaffold protein	
	SHANK3	postsynaptic scaffold protein	S
	SCN2A	propagation of neuronal action potentials	1000
	SYNE1	synaptic nuclear envelope	1 A 10
	NRXN1	synaptic receptor / cell adhesion	
	DYRK1A	cell proliferation	
	PTEN	cell proliferation; inhibition of AKT signaling pathway	
	SYNGAP1	dendritic spine development and maturation	
Cell Signaling	МАРКЗ	extracellular signal-regulated kinase	
	POGZ	mitotic cell cycle progression	
	MVP	nucleo-cytoplasmic transport	
	TSC2	regulates mTORC1 / PI3K signaling	
	TSC1	regulates mTORC1 / PI3K signaling	
	TRIO	Rho signalling	
Translational	CUL3	protein ubiquitination and degradation	
	UBE3A	protein ubiquitination and degradation	
Regulation	KCTD13	protein ubiquitination and degradation	
	CYFIP1	translational repression	
	FMR1	translational repression	
	CHD8	chromatin remodelling	
	CHD2	chromatin remodelling	
	ADNP	chromatin remodelling	
	SATB2	chromatin remodelling	
	ARID1B	chromatin remodelling	
		DNA methytransferase	
Transcriptional	HDAC4	histone deacetylase	
-	SETD5	histone methyltransferase histone methyltransferase	
Regulation	NSD1	•	
	MED13L	histone methyltransferase transciptional cofactor	
	TBR1	transcription factor; differentiation and migration of neurons	
	TBL1XR1	transcription activation	
	MECP2	transcriptional repression through binding methylated DNA	
	FOXP1	transcriptional repression through binding methylated DNA	
	1 OM 1		

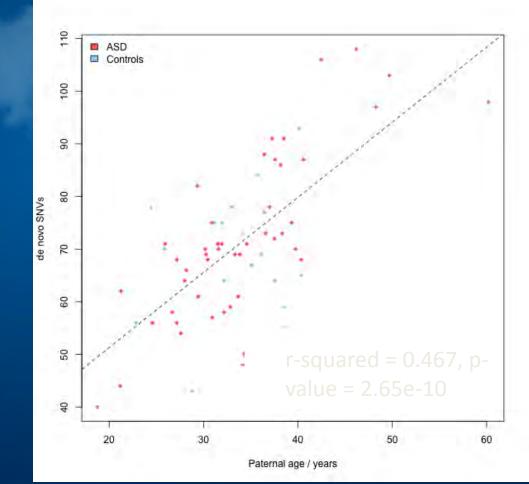


Moving beyond the exome

Toward <u>all</u> variation in <u>all</u> of the genome



Determining patterns of de novo mutation by Whole Genome Sequencing



50% of variance in germline mutation rate is explained by father's age

5,586 mutations detected in 71 offspring

Average mutation rate = 1X10⁻⁸

Older reproductive age (>40) is a significant risk factor ASD mother father

Advancing Paternal Age and Autism

Abraham Reichenberg, PhD; Raz Gross, MD, MPH; Mark Weiser, MD; Michealine Bresnahan, PhD; Jeremy Silverman, PhD; Susan Harlap, MBBS; Jonathan Rabinowitz, PhD; Cory Shulman, PhD; Dolores Malaspina, MD; Gad Lubin, MD; Haim Y. Knobler, MD; Michael Davidson, MD; Ezra Susser, MD, DrPH

Reichenberg, Susser et al, Arch Gen Psych 63:1026-1032, 2006

Estimated Autism Risk and Older Reproductive Age

Marissa D. King, PhD, Christine Fountain, PhD, Diana Dakhlallah, BA, and Peter S. Bearman, PhD

King et al, Am Jnl Public Health 99(9):1673-1679, 2009

1.3-1.8 1.3-1.7 fold fold

No

effect

5-fold

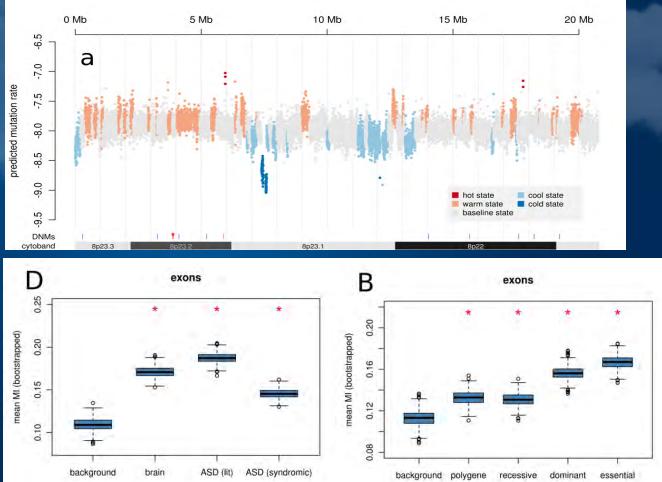
greater

risk

This finding may also relate to genetic risk factors

Hypermutability is a common feature of brain and autism genes Includes hotspots for <u>nucleotide substitution</u>, CNV or both

Michaelson et al 2012



Madhu ake MichaelsonGujral

Dheeraj Malhotra

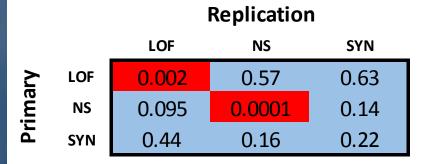
De novo protein coding SNVs in our study overlap with genes hit by *de novo* coding mutations in studies of neurodevelopmental disorders

Case vs Case

Cases (ASD, ID, SZ) LOF+NS

DNM	n DNMs	observed	expected	fold	P	
type		overlap	(95%CI)	IUIU	•	
LOF+NS	49	28	14.8(10-20)	1.84	0.000078	
lof	8	6	2.6(1-5)	1.92	0.019	
NS	41	22	12.1(8-17)	1.75	0.001	
SYN	25	11	7.2(4-11)	1.47	0.057	

Case vs Control


		Controls LOF+NS				
DNM type	n DNMs	observed overlap	expected (95%Cl)	fold	Р	
LOF+NS	49	6	6.5(3-10)	0.93	0.5	
lof	8	0	0.8(0-2)	0.55	0.4	
NS	41	6	5.6(2-9)	1.06	0.49	
SYN	25	0	2.9(1-6)	0.25	0.041	

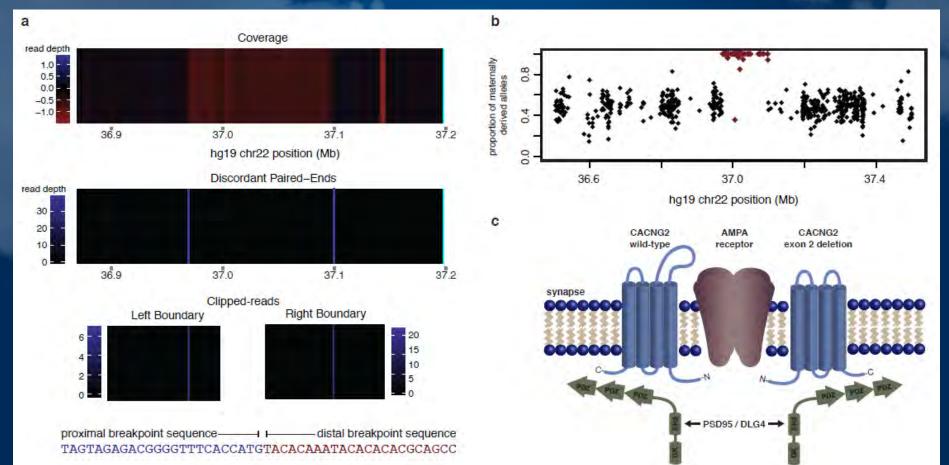
Missense variants are driving the association

P-value

Case vs Case

Case vs Control

			Replicatior	ı
		LOF	NS	SYN
۲ ک	LOF	0.5	0.47	0.44
rimaı	NS	0.4	0.9	0.51
Рг	SYN	0.49	0.51	0.57


Nonsynonymous and Loss-of-Function mutations impact different genes

Genes overlapping with exome studies

Gene	function	WES_WGS_hits	Gene	function	WES_WGS_hits
NAV1	nonsynonymous	ASD	GRB14	nonsynonymous	ID
CUL9	splicing	ASD	POP1	nonsynonymous	ID
PRPS1L1	nonsynonymous	ASD	KIF20B	nonsynonymous	ID
ERP44	nonsynonymous	ASD	PHIP	nonsynonymous	ID,ASD
FTSJ3	nonsynonymous	ASD	PDCD11	nonsynonymous	SZ
LAMB2	nonsynonymous	ASD,ASD	TEKT5	nonsynonymous	SZ
FOXP1	stopgain	ASD,ASD	SHKBP1	nonsynonymous	SZ
GIGYF1	stopgain	ASD,ASD	CERK	nonsynonymous	SZ
GPR98	nonsynonymous	ASD,ASD,EE	TAF7L	nonsynonymous	SZ
SETD5	nonsynonymous	ASD,ASD,ID	HIVEP3	stopgain	SZ,ASD
FCGBP	nonsynonymous	ASD,SZ	KMT2D	nonsynonymous	SZ,ASD
NLRP8	nonsynonymous	EE	RYR3	nonsynonymous	SZ,SZ,ASD

Sequence level characterization of de novo CNVs

De novo and rare mutations contribute to ~30% of ASDs

Mutation Type	%	%	odds	% ASD
	cases	controls	ratio	explained
de novo copy number variation	8	2	4	6
de novo loss of function	20	10	2	10
De novo missense (recurrent in this study)	22	12	1.8	10
rare complete gene knock-out	6	3.3	1.8	2.7
rare ♂ X-linked loss of function	4.8	3.1	1.5	1.7

How do we explain the 'missing heritability'? Ch

Conclusions

De novo mutation is an important contributor to risk for ASDs

 – CNVs, SNVs, indels in coding regions contribute to ~20% of cases
 Rare variants and de novo mutation in the other 99% of the (non-coding) remain largely unexplored
 Rare mutations in regulatory elements of genes may explain some of the missing heritability of Autism

Sebat Lab

Rady Childen's Hospital

Danny Antaki

Madhu Gujral

Keith Vaux

Dheeraj Malhotra

Amina Noor

National Institute

of Mental Health

Special Thanks

UCSD Neuroscience

Karen Pierce **Eric Courchesne**

Thank You

Jonathan Sebat, Ph.D. 858-534-6526 jsebat@ucsd.edu

